Виды картографических проекций

С Земли на карту

Земля имеет неправильную форму. Проекция основана на сфере или эллипсоиде вращения, модели которых более или менее близки к реальной форме картофеля . Начнем с выбора из глобального геоида представительного эллипсоида вращения. Используется несколько эллипсоидов, наиболее распространенными из которых являются:

  • Кларк 1866
  • Clarke 1880 Английский
  • Кларк 1880 IGN
  • Бессель
  • Воздушный
  • Хейфорд 1909
  • Международный 1924 г.
  • WGS 66
  • Международный 1967
  • WGS 72
  • IAG-GRS80
  • WGS 84

Эллипсоиды IAG-GRS80 и WGS84 для большинства приложений считаются одинаковыми. Точнее, разница по малой полуоси между эллипсоидами WGS84 и IAG-GRS80 составляет 0,1  мм . IAG-GRS80 — это эллипсоид, созданный в 1980 году Международной ассоциацией геодезии в качестве геодезической справочной системы .

WGS84 — это всемирная геодезическая система , созданная в 1984 году.

Одного эллипсоида недостаточно: необходимо расположить его относительно реальной поверхности Земли. Данные эллипсоида и параметров позиционирования составляют так называемые геодезические данные, из которых может быть применена проекция.

Таким образом, геодезические данные определяются следующим образом:

  • данные эллипсоида;
  • положение центра эллипсоида по отношению к центру масс Земли (от нескольких сантиметров до более ста метров);
  • ориентация осей эллипсоида;

или, более конкретно, для местных данных:

  • эллипсоид;
  • фундаментальная точка , где эллипсоид касательные геоида,
  • начальный азимут (северное направление в этой точке),
  • меридиан (опорная точка),

к которому следует добавить текущую проекцию.

Существует множество баз данных, каждая из которых адаптирована для конкретного использования, от глобальных представлений земного шара (они являются наиболее точными, например, DORIS, который позволяет измерять дрейф континентов или отскок после ледникового периода ) до кадастровых баз (менее точных, но приближающихся к геоид). Вот некоторые используемые геодезические системы координат:

  • Новая триангуляция Франции (NTF): Франция (додекабрь 2000 ; большинство карт IGN все еще находятся в этой системе) на основе эллипсоида Clarke 1880 IGN. Основная точка находится в Пантеоне в Париже . Текущий прогноз — Ламберт .
  • Французская геодезическая сеть (RGF) 1993: Франция, основанная на эллипсоиде IAG-GRS80, связанная проекция — проекция Lambert93 (конформная коническая проекция). ВНоябрь 2006 г., серия из 9 конформных конических проекций также была предложена в качестве проекций, связанных с RGF93. Номенклатура этих проекций: CC42, CC43, CC44, CC45, CC46, CC47, CC48, CC49 и CC50. Каждая зона сосредоточена на параллельно с круглой широты , в пределах от 42 — й до 50 — й  степени северной широты с трюме одного градуса широты по обе стороны от этой параллели.
  • European Datum (ED) 50: единая европейская система, основанная на эллипсоиде Хейфорда 1909 г. Фундаментальная точка находится в Потсдаме , Германия . Текущий прогноз — UTM.
  • Всемирная система Геодезическая (WGS84): Глобальная система (без фундаментальной точки), разработанная США Министерства обороны и используется GPS , на основе WGS84 эллипсоида. Текущий прогноз — UTM.

7.1. КАРТОГРАФИЧЕСКАЯ СЕМИОТИКА

Язык карты – это используемая в картографии знаковая система, включающая условные обозначения, способы изображения, правила их построения, употребления и чтения при создании и использовании карт. Во все времена язык карты не только обеспечивал хранение и передачу пространственно-временной информации, но и играл роль общего языка в науках о Земле и смежных с ними отраслях знания.
На стыке картографии и семиотики – лингвистической науки, исследующей свойства знаков и знаковых систем, сформировался особый раздел картографическая семиотика, в рамках которой разрабатывается общая теория систем картографических знаков как языка карты.
В ней изучается довольно обширный круг проблем, касающихся происхождения, классификации, свойств и функций картографических знаков и способов картографического изображения. Семиотика включает три основных раздела: синтактику, семантику и прагматику, соответственно эти разделы существуют и в картографической семиотике:
       картографическая синтактика – изучает правила построения и употребления знаковых систем, их структурные свойства, грамматику языка карты;
       картографическая семантика – исследует соотношения условных знаков с самими отображаемыми объектами и явлениями;
       картографическая прагматика – изучает информационную ценность знаков как средства коммуникации и особенности их восприятия читателями карты. Иногда в составе картографической семиотики выделяют еще один раздел – картографическую стилистику, изучающую стили и факторы, которые определяют выбор изобразительных средств в соответствии с назначением и функциями картографических произведений.
Исследования показали, что в языке карты можно различить, по крайней мере, два слоя (подъязыка): один из них отражает размещение картографируемых объектов, их пространственную форму, ориентацию, взаимное положение, другой – содержательную сущность этих явлений, их внутреннюю структуру, качественные и количественные характеристики. Грамматика обоих подъязыков определяется правилами картографической семиотики.
Язык карты – это объектный язык картографии. Его главные функции (как и картографии вообще) – коммуникативная, т.е. передача некоторого объема информации от создателя карты к читателю, и познавательная – получение новых знаний о картографируемом объекте.

Недостатки

Проблема с цилиндрической проекцией, как мы видели в предыдущих разделах, заключается в том, что шкала искажена в сторону от экватора или опорных параллелей, также известных как стандартные параллели.

Главный недостаток заключается в том, что за пределами тропических регионов это искажение форм и расстояний увеличивается, увеличивая эту деформацию для полярных широт, из-за чего эти территории кажутся намного больше, чем они есть на самом деле.

По этой причине были внесены модификации для максимального устранения искажений, появляющиеся варианты в цилиндрических выступах, основные характеристики которых представлены ниже.

Как работает проекция Герардуса Меркатора?

Чтобы понять, как работает проекция Меркатора, нам достаточно представить, что у нас есть полупрозрачный шар..

Популярные статьи  Розовоухая утка Malacorhynchus membranaceus

Этот воздушный шар будет завернут в бумажный цилиндр, так что линия экватора является единственной точкой контакта между воздушным шаром и цилиндром..

Поскольку это проекция, необходимо вмешательство света. Чтобы выполнить проекцию Меркатора, источник света должен быть расположен в экваторе, на стороне, противоположной точке контакта между земным шаром и бумагой..

Таким образом, свет спроецирует фигуру земных масс на бумажный цилиндр. Наиболее близкие к экватору формы будут проецироваться практически идеально.

Однако по мере удаления от параллели формы становятся искаженными и увеличенными. По этой причине наблюдается, что Гренландия — это размер Африки, тогда как на самом деле это размер Мексики..

ArcGIS автоматически интегрирует данные в известных системах координат

Все географические данные, используемые в ArcGIS, предполагают наличие корректной системы координат, что позволяет им быть локализованными на реальной земной поверхности.

Если данные имеют корректную систему координат, ArcGIS может автоматически интегрировать их «на лету» с другими спроецированными данными в соответствующую среду – для картографирования, трехмерной визуализации, анализа и т.д.

Если данные не имеют пространственной привязки, их невозможно интегрировать. Необходимо определить ее до того, как вы начнете использовать эти данные в ArcGIS. Пространственная привязка (система координат) является метаданными. Она описывает систему координат, которую используют данные.

недостатки

Исказить поверхность земли

По мере удаления проекции Меркатора от линии экватора представление земной поверхности искажается. Это искажение делает формы на полюсах больше, чем они есть на самом деле.

Проекция Меркатора показывает, что Гренландия — это размер Африки, что Аляска больше, чем Бразилия, и что Антарктида — бесконечное ледяное пространство..

На самом деле, Гренландия — это по размеру Мексика, территория Аляски составляет 1/5 территории Бразилии, а Антарктида немного больше Канады..

В результате коммерческие карты в образовательных целях обычно не используют проекцию Меркатора, чтобы не создавать проблем в процессе обучения студентов. Тем не менее, они все еще используются в представлении районов вблизи Эквадора.

Полярные области не представлены

Поскольку проекция Меркатора основана на цилиндре, трудно представить полярные области планеты Земля. По этой причине полюса не включены в этот тип проекции карты..

Методы получения проекций

Изучая картографические проекции, их виды и свойства необходимо упомянуть о методах их построения. Итак, картографические проекции получают, используя два основных метода:

  • геометрический;
  • аналитический.

В основе геометрического метода лежат закономерности линейной перспективы. Наша планета условно принимается сферой некоторого радиуса и проецируется на цилиндрическую или коническую поверхность, которая может либо касаться, либо рассекать ее.

Виды картографических проекций

Проекции, полученные подобным способом, называются перспективными. В зависимости от положения точки наблюдения относительно поверхности Земли перспективные проекции разделяют на виды:

  • гномонические или центральные (когда точка зрения совмещена с центром земной сферы);
  • стереографические (в этом случае точка наблюдения расположена на поверхности относимости);
  • ортографическая (когда поверхность наблюдается из любой точки, находящейся вне сферы Земли; проекция строится переносом точек сферы с помощью параллельных линий, перпендикулярных к отображающей поверхности).

Аналитический метод построения картографических проекций базируется на математических выражениях, связывающих точки на сфере относимости и плоскости отображения. Такой метод является более универсальным и гибким, позволяя создавать произвольные проекции по заранее заданному характеру искажения.

Преимущества цилиндрической проекции

В картографии используется несколько типов цилиндрических проекций, каждый из которых имеет свои сильные и слабые стороны. В любом случае выбор типа проекции будет зависеть от конечного назначения карты.

Прежде всего, преимущество этой и любой другой картографической проекции состоит в том, что с их помощью вы можете визуализировать части Земли на плоской поверхности и брать их с собой для удобства.

Цилиндрическая проекция очень подходит для карт мира, поскольку могут быть представлены оба полушария, в отличие от других проекций, таких как коническая проекция, которая позволяет отображать только одно из полушарий.

Теперь при изображении сферической поверхности на плоскости она всегда будет так или иначе искажена. В случае цилиндрической проекции наименьшие искажения возникают в тропической зоне.

Именно для того, чтобы воспользоваться преимуществами этого типа проекции, но в то же время, пытаясь минимизировать эти неудобства, географы на протяжении веков предлагали различные типы цилиндрических проекций.

Термины

Градусная сеть — система меридианов и параллелей на географических картах и глобусах, служащая для отсчёта географических координат точек земной поверхности — долгот и широт.

Эллипсоид — замкнутая поверхность. Эллипсоид можно получить из поверхности шара, если шар сжать (растянуть) в произвольных отношениях в трех взаимно перпендикулярных направлениях.

Нормальная сетка — картографическая сетка для каждого класса проекций, изображение меридианов и параллелей которой имеет наиболее простой вид.

Концентрические окружности — окружности, имею­щие общий центр и лежащие в одной плоскости.

Что такое картографическая проекция?

Картографическая проекция — это способ сгладить трехмерную поверхность земного шара (или другого сферического тела) в плоскость для того, чтобы сделать карту. Это требует систематического преобразования широт и долгот местоположений поверхности сферы в местоположения на плоскости. Этот процесс обычно математический, но некоторые методы основаны на графике.

Все проекции имеют искажения. Они бывают следующих видов: искажения форм, искажения площадей, искажения длин, искажения углов. Особенно большими искажения бывают на мелкомасштабных картах, на крупномасштабных они практически неощутимы.

Цилиндрическая проекция

Цилиндрические картографические проекции являются одним из способов изображения Земли. В этом виде проекции параллели нормальной сетки параллельные прямые, а меридианы перпендикулярные параллелям прямые; расстояния между ними пропорциональны разностям долгот. Единственный фактор, который отличает разные цилиндрические проекции друг от друга, — это масштаб, используемый при разнесении параллельных линий на карте.

Виды картографических проекций
Цилиндрические проекции. Равноугольная Меркатора

Недостатки цилиндрических проекций в том, что они сильно искажены на полюсах. Хотя области вблизи экватора с большей вероятностью будут точными в сравнению с реальной Землей, параллели и меридианы, являющиеся прямыми линиями, не учитывают искривление Земли. Цилиндрические отлично подходят для сравнения широт друг с другом и полезны для обучения и визуализации мира в целом, но на самом деле не являются наиболее точным способом визуализации того, как мир действительно выглядит в целом.

Популярные статьи  Анаконда

Типы цилиндрических картографических проекций, которые вы можете знать, включают в себя популярные проекции Меркатора, Кассини, Гаусса-Крюгера, Миллера, Бермана, Хобо-Дайера и Галла-Петерса.

Коническая проекция карты

Канонические проекции включают эквидистантную коническую проекцию, конформную коническую проекцию Ламберта и конику Альберса. Эти карты имеют конусную константу, которая определяет угловое расстояние между меридианами. Эти меридианы являются равноотстоящими и прямыми линиями, которые сходятся в местах вдоль проекции независимо от того, есть ли полюс или нет. Как и цилиндрическая проекция, проекции конической карты имеют параллели, которые пересекают меридианы под прямым углом с постоянной мерой искажения повсюду.

Проекции конической карты разработаны так, чтобы их можно было обернуть вокруг конуса на вершине сферы (шара), но они не должны быть геометрически точными.

Виды картографических проекций
Проекция Альберса является примером проекции конической карты

Конические проекции лучше всего подходят для использования в качестве региональных карт или карт полушария, редко для полной карты мира. Искажение на конической карте делает его неподходящим для использования в качестве визуального изображения всей Земли, но делает его отличным для визуализации умеренных регионов, карт погоды, климатических проекций и многого другого.

Азимутальная картографическая проекция

В азимутальной проекции параллели нормальной сетки являются концентрическими кругами, а меридианы — их радиусами, расходящимися из общего центра параллелей под углами, равными разности долгот. Каждая точка на карте имеет тот же самый азимут по отношению к среднему меридиану, который эта же точка имеет со средним меридианом на сфере.

Виды картографических проекций
Азимутальная равновеликая проекция ЛамбертаВиды картографических проекций
Эквидистантная азимутальная проекция с северного полюса

Азимутальная картографическая проекция является угловой — учитываются три точки на карте (A, B и C), азимут от точки B до точки C определяет угол, на который кто-то должен смотреть или двигаться, чтобы добраться до A. Эти угловые отношения более известны как дуги большого круга или геодезические дуги. Азимутальные карты полезны для определения направления в любой точке Земли, используя центральную точку в качестве ориентира.

5.3. КЛАССИФИКАЦИЯ ПРОЕКЦИЙ ПО ХАРАКТЕРУ ИСКАЖЕНИЙ

Для различных целей создаются различные по характеру искажений проекции. Характер искажений проекции определяется отсутствием в ней определенных искажений (углов, длин, площадей). В зависимости от этого все картографические проекции по характеру искажений подразделяются на четыре группы:
— равноугольные (конформные);
— равнопромежуточные (эквидистантные);
—равновеликие (эквивалентные);
— произвольные.

5.3.1. Равноугольные проекции

Равноугольными называются такие проекции, в которых направления и углы изображаются без искажений. Углы, измеренные на картах равноугольных проекций, равны соответствующим углам на земной поверхности. Бесконечно малая окружность в этих проекциях всегда остается окружностью.
В равноугольных проекциях масштабы длин в любой точке по всем направлениям одинаковы, поэтому у них нет искажения формы бесконечно малых фигур и нет искажения углов (рис. 5.7, Б). Это общее свойство равноугольных проекций выражает формула ω = 0°. Но формы реальных (конечных) географических объектов, занимающих целые участки на карте, искажаются (рис. 5.8, а). У равноугольных проекций наблюдаются особенно большие искажения площадей (что отчетливо демонстрируют эллипсы искажений).

Виды картографических проекций

Рис. 5.7. Вид эллипсов искажений в проекциях равновеликих —- А, равноугольных — Б, произвольных — В, в том числе, равнопромежуточных по меридиану — Г и равнопромежуточных по параллели — Д. На схемах показано искажение угла 45°.

Эти проекции используются для определения направлений и прокладки маршрутов по заданному азимуту, поэтому их всегда используют на топографических и навигационных картах. Недостатком равноугольных проекций является то, что в них сильно искажаются площади (рис. 5.7, а).

Виды картографических проекций
Рис. 5.8. Искажения в цилиндрической проекции:а –  равноугольной; б – равнопромежуточной; в – равновеликой

5.6.2. Равнопромежуточные проекции

Равнопромежуточными проекциями называют проекции, у которых масштаб длин одного из главных направлений сохраняется (остается неизменным) (рис. 5.7, Г. рис. 5.7, Д.) Применяются главным образом для создания мелкомасштабных справочных карт и карт звездного неба.

5.6.3. Равновеликие проекции

Равновеликими называются проекции, в которых нет искажений площадей, т. е. площадь фигуры, измеренной на карте, равна площади этой же фигуры на поверхности Земли. В равновеликих картографических проекциях масштаб площади повсюду имеет одну и ту же величину. Это свойство равновеликих проекций можно выразить формулой:

P = a× b = Const = 1 (5.15)

Неизбежным следствием равновеликости этих проекций является сильное искажение у них углов и форм, что хорошо поясняют эллипсы искажений (рис. 5.7, A).

5.6.4. Произвольные проекции

К произвольным относятся проекции, в которых имеются искажения длин, углов и площадей. Необходимость использования произвольных проекций объясняется тем, что при решении некоторых задач возникает необходимость в измерении углов, длин и площадей на одной карте. Но ни одна проекция не может быть одновременно и равноугольной, и равнопромежуточной, и равновеликой. Ранее уже говорилось, что с уменьшением изображаемого участка поверхности Земли на плоскости уменьшаются и искажения изображения. При изображении небольших участков земной поверхности в произвольной проекции величины искажений углов, длин и площадей незначительны, и при решении многих задач их можно не учитывать.

Терминология

Термин «проекция» следует понимать не в смысле геометрической проекции ( центральная проекция или перспектива, ортогональная проекция ), а как математическое преобразование, при котором точки земного шара соответствуют точкам плоскости. Вероятно, что термин «проекция» использовался в отношении первых плоских представлений ( стереографических или гномонических ), которые действительно являются центральными проекциями.

Эта ссылка на геометрическое преобразование часто является источником ошибок. Вот почему вводящий в заблуждение термин «картографическая проекция» иногда заменяется термином « преобразование плоскости » или « представление плоскости ».

Цилиндрическая проекция Меркатора

Изобретение этой проекции приписывается бельгийскому картографу, географу и математику Герарду Меркатору в 1569 году. Это одна из наиболее широко используемых проекций на картах мира даже сегодня.

Его главное достоинство в том, что маршрут с постоянным направлением отображается на карте прямой линией.

Из-за этой уникальной особенности навигаторы переняли именно этот тип карты вскоре после ее выпуска. В этом случае проекция соответствует проекции, поскольку сохраняет направления и углы.

Популярные статьи  Veneroida

Но именно это делает проекцию Меркатора не сохраняющей площади.Регионы за пределами тропиков, особенно далеко на севере или далеко на юге, выглядят чрезмерно большими.

С момента своего создания проекция Меркатора широко использовалась для отображения карт мира с континентами и странами.

Виды картографических проекций

5.7. РАСПОЗНАВАНИЕ ПРОЕКЦИЙ

Распознать проекцию, в которой составлена карта, – значит установить ее название, определить принадлежность к тому или иному виду, классу. Это нужно для того, чтобы иметь представление о свойствах проекции, характере, распределении и величине искажений – словом, для того, чтобы знать, как пользоваться картой, чего от нее можно ожидать.
Некоторые нормальные проекции сразу распознаются по виду меридианов и параллелей. Например, легко узнаваемы нормальные цилиндрические, псевдоцилиндрические, конические, азимутальные проекции. Но даже опытный картограф не сразу распознает многие произвольные проекции, потребуются специальные измерения по карте, чтобы выявить их равноугольность, равновеликость или равнопромежуточность по одному из направлений. Для этого существуют особые приемы: сперва устанавливают форму рамки (прямоугольник, окружность, эллипс), определяют, как изображены полюсы, затем измеряют расстояния между соседними параллелями вдоль по меридиану, площади соседних клеток сетки, углы пересечения меридианов и параллелей, характер их кривизны и т.п.
Существуют специальные таблицы-определители проекций для карт мира, полушарий, материков и океанов. Проведя необходимые измерения по сетке, можно отыскать в такой таблице название проекции. Это даст представление о ее свойствах, позволит оценить возможности количественных определений по данной карте, выбрать соответствующую карту с изоколами для внесения поправок.

ВидеоВиды проекций по характеру искажений

Вопросы для самоконтроля:

  1. Какие элементы составляют математическую основу карты?
  2. Что называют масштабом географической карты?
  3. Что называют главным масштабом карты?
  4. Что называют частным масштабом карты?
  5. Чем обусловлено отклонение частного масштаба от главного на географической карте?
  6. Как измерить расстояние между точками на морской карте?
  7. Что представляет собой эллипс искажений и для каких целей он используется?
  8. Как можно определить по эллипсу искажений наибольший и наименьший масштабы?
  9. Какие существует методы переноса поверхности земного эллипсоида на плоскость, в чем их сущность?
  10. Что называют картографической проекцией?
  11. Как классифицируют проекции по характеру искажений?
  12. Какие проекции называют равноугольными, как изобразить эллипс искажений на этих проекциях?
  13. Какие проекции называют равнопромежуточными, как изобразить эллипс искажений на этих проекциях?
  14. Какие проекции называют равновеликими, как изобразить эллипс искажений на этих проекциях?
  15. Какие проекции называют произвольными?
  • Далее
  • Главная
  • Предыдущая

7.10. СПОСОБ КОЛИЧЕСТВЕННОГО ФОНА

Этот способ, как и способ качественного фона, отображает подразделение территории на однородные районы, но по количественному показателю (или показателям). Для этого по имеющимся источникам выделяют согласно разработанной ступенчатой шкале однородные районы, которые затем раскрашивают цветом разной насыщенности или покрывают соответствующими штриховками. При применении количественного фона линии на карте разграничивают выделенные однородные районы, причем смежные районы могут передавать величину явления, соответствующую противоположным ступеням шкалы.
Для использования этого способа требуется хорошая изученность территории по определенным показателям в количественном отношении. Очень часто для построения карт необходимо выполнение картографических работ, например составление морфометрических карт по топокартам (густоты и глубины расчленения рельефа, крутизны склонов и др.).
Способ количественного фона используется главным образом для составления карт природы (геоморфологических, гидрологических, гидрогеологических и др.), но его можно встретить и на социально-экономических картах, например на картах плотности населения.

Виды картографических проекций
Рис. 7.10. Количественный фон.

Возможно сочетание качественного и количественного фонов, например при выделении районов преобладающих конфессий (качественный фон) с дополнительной характеристикой процентного соотношения населения разного вероисповедания (количественный фон).

Вопросы и задания для самоконтроля

  1. Как называют научную дисциплину, исследующую свойства знаков и знаковых систем?
  2. Какие разделы включает картографическая семиотика? Дайте им характеристику.
  3. Что включает понятие «Язык карты»?
  4. Назовите основные функции языка карты? Дайте этим функциям характеристику.
  5. С какой целью используют картографические условные знаки?
  6. На какие основные группы подразделяют условные знаки? Дайте им характеристику.
  7. С какой целью используют графические переменные? Приведите примеры графических переменных.
  8. Какие функции выполняют значки на географических картах? Приведите примеры использования способа значков?
  9. Как различают значки по форме? Дайте каждой форме значка характеристику.
  10. Какие значки используются для передачи динамики явлений?
  11. С какой целью применяют линейные знаки?
  12. Дайте определение изолинии.
  13. С какой целью применяют изолинии? Приведите примеры изолиний.
  14. Каковы количественные и качественные показатели земной поверхности можно показать с помощью изолиний?
  15. Как называют линии, отображающие распределение дискретных объектов?
  16. Для характеристики каких географических явлений применяют способ качественного фона?
  17. Какие графические средства применяют для показа географических явлений способом качественного фона?
  18. Какие явления показывают с помощью количественного фона?
  19. Какие графические средства применяют для показа географических явлений способом количественного фона?
  • Далее
  • Главная
  • Предыдущая

Цилиндрическая веб-проекция — Меркатор

Это вариант классической проекции Меркатора, которая стала стандартной картографической системой для Интернета. Это система, принятая Google в 2005 году для своих популярных приложений, Google Maps и Google Earth.

Другие крупные поставщики карт в Интернете, такие как Bing Maps, Mapquest, OpenStreetMap, Mapbox и другие, приняли эту систему проецирования.

Разница между исходной проекцией Меркатора и проекцией этого типа очень тонкая, и конечный результат очень мало отличается.

В исходной проекции Земля предполагается сферой, тогда как в сети Меркатор Земля считается эллипсоидальной.

Однако есть страны, которые не внедрили эти улучшения в свои карты. Например, для континентальной части Соединенных Штатов и Канады проекция конической формы Ламберта предпочтительна для аэронавигационных карт и проекция Альберта Коника для данных кадастра.

Оцените статью
( Пока оценок нет )
Добавить комментарий